Classical Lie Symmetries and Reductions of a Nonisospectral Lax Pair

نویسندگان

چکیده

The classical Lie method is applied to a nonisospectral problem associated with system of partial differential equations in 2+1 dimensions (Maccari A, J. Math. Phys. 39, (1998), 6547-6551). Identification the symmetries provides set reductions that give rise different nontrivial spectral problems 1+1 dimensions. form which parameter Lax pair introduced carefully described.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonisospectral scattering problems and similarity reductions

We give mappings between hierarchies having nonisospectral scattering problems and hierarchies having isospectral scattering problems. Special cases of these changes of variables involve similarity variables, and similarity solutions of a hierarchy are seen to correspond to time-independent solutions of an equivalent hierarchy. We thus explain why the use of nonisospectral scattering problems a...

متن کامل

A Lax pair for a lattice modified KdV equation, reductions to q-Painlevé equations and associated Lax pairs

We present a new, nonautonomous Lax pair for a lattice nonautomous modified Korteweg–deVries equation and show that it can be consistently extended multidimensionally, a property commonly referred to as being consistent around a cube. This nonautonomous equation is reduced to a series of q-discrete Painlevé equations, and Lax pairs for the reduced equations are found. A 2× 2 Lax pair is given f...

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

Lie Symmetries of Differential Equations: Classical Results and Recent Contributions

Lie symmetry analysis of differential equations provides a powerful and fundamental framework to the exploitation of systematic procedures leading to the integration by quadrature (or at least to lowering the order) of ordinary differential equations, to the determination of invariant solutions of initial and boundary value problems, to the derivation of conservation laws, to the construction o...

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Mathematical Physics

سال: 2021

ISSN: ['1776-0852', '1402-9251']

DOI: https://doi.org/10.1142/s1402925111001271